Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Proc Natl Acad Sci U S A ; 119(28): e2202370119, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-1908384

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections initiate in the bronchi of the upper respiratory tract and are able to disseminate to the lower respiratory tract, where infections can cause an acute respiratory distress syndrome with a high degree of mortality in elderly patients. We used reconstituted primary bronchial epithelia from adult and child donors to follow the SARS-CoV-2 infection dynamics. We show that, in epithelia from adult donors, infections initiate in multiciliated cells and spread within 24 to 48 h throughout the whole epithelia. Syncytia formed of ciliated and basal cells appeared at the apical side of the epithelia within 3 to 4 d and were released into the apical lumen, where they contributed to the transmittable virus dose. A small number of reconstituted epithelia were intrinsically more resistant to virus infection, limiting virus spread to different degrees. This phenotype was more frequent in epithelia derived from children versus adults and correlated with an accelerated release of type III interferon. Treatment of permissive adult epithelia with exogenous type III interferon restricted infection, while type III interferon gene knockout promoted infection. Furthermore, a transcript analysis revealed that the inflammatory response was specifically attenuated in children. Taken together, our findings suggest that apical syncytia formation is an underappreciated source of virus propagation for tissue or environmental dissemination, whereas a robust type III interferon response such as commonly seen in young donors restricted SARS-CoV-2 infection. Thus, the combination of interferon restriction and attenuated inflammatory response in children might explain the epidemiological observation of age-related susceptibility to COVID-19.


Subject(s)
Bronchi , COVID-19 , Giant Cells , Interferons , Respiratory Mucosa , SARS-CoV-2 , Aged , Bronchi/immunology , Bronchi/virology , COVID-19/immunology , COVID-19/virology , Child , Disease Susceptibility , Giant Cells/immunology , Giant Cells/virology , Humans , Interferons/immunology , Respiratory Mucosa/immunology , Respiratory Mucosa/virology , SARS-CoV-2/immunology , Interferon Lambda
2.
PLoS One ; 16(9): e0255148, 2021.
Article in English | MEDLINE | ID: covidwho-1405336

ABSTRACT

The widespread use of facemasks throughout the population is recommended by the WHO to reduce transmission of the SARS-CoV-2 virus. As some regions of the world are facing mask shortages, reuse may be necessary. However, used masks are considered as a potential hazard that may spread and transmit disease if they are not decontaminated correctly and systematically before reuse. As a result, the inappropriate decontamination practices that are commonly witnessed in the general public are challenging management of the epidemic at a large scale. To achieve public acceptance and implementation, decontamination procedures need to be low-cost and simple. We propose the use of hot hygroscopic materials to decontaminate non-medical facemasks in household settings. We report on the inactivation of a viral load on a facial mask exposed to hot hygroscopic materials for 15 minutes. As opposed to recent academic studies whereby decontamination is achieved by maintaining heat and humidity above a given value, a more flexible procedure is proposed here using a slow decaying pattern, which is both effective and easier to implement, suggesting straightforward public deployment and hence reliable implementation by the population.


Subject(s)
Decontamination/methods , Equipment Reuse/standards , Masks/virology , COVID-19/prevention & control , Hot Temperature , Humans , Humidity , SARS-CoV-2
3.
COVID ; 1(1):337-344, 2021.
Article in English | MDPI | ID: covidwho-1390554

ABSTRACT

Since the beginning of the pandemic, a race has been underway to detect SARS-CoV-2 virus infection (PCR screening, serological diagnostic kits), treat patients (drug repurposing, standard care) and develop a vaccine. After almost a year of active circulation worldwide, SARS-CoV-2 variants have appeared in different countries. Those variants include mutations in multiple regions of the genome, particularly in the spike gene. Because this surface protein is a key player in both the spread of the virus and the efficacy of vaccine strategies, the challenge is to efficiently monitor the appearance of spike mutations in the population. The present work describes a procedure based on the widely available Sanger technology to produce a full-length sequence of the spike gene from patient-derived samples.

SELECTION OF CITATIONS
SEARCH DETAIL